Receiver function deconvolution using transdimensional hierarchical Bayesian inference

نویسنده

  • J. M. Kolb
چکیده

S U M M A R Y Teleseismic waves can convert from shear to compressional (Sp) or compressional to shear (Ps) across impedance contrasts in the subsurface. Deconvolving the parent waveforms (P for Ps or S for Sp) from the daughter waveforms (S for Ps or P for Sp) generates receiver functions which can be used to analyse velocity structure beneath the receiver. Though a variety of deconvolution techniques have been developed, they are all adversely affected by background and signal-generated noise. In order to take into account the unknown noise characteristics, we propose a method based on transdimensional hierarchical Bayesian inference in which both the noise magnitude and noise spectral character are parameters in calculating the likelihood probability distribution. We use a reversible-jump implementation of a Markov chain Monte Carlo algorithm to find an ensemble of receiver functions whose relative fits to the data have been calculated while simultaneously inferring the values of the noise parameters. Our noise parametrization is determined from pre-event noise so that it approximates observed noise characteristics. We test the algorithm on synthetic waveforms contaminated with noise generated from a covariance matrix obtained from observed noise. We show that the method retrieves easily interpretable receiver functions even in the presence of high noise levels. We also show that we can obtain useful estimates of noise amplitude and frequency content. Analysis of the ensemble solutions produced by our method can be used to quantify the uncertainties associated with individual receiver functions as well as with individual features within them, providing an objective way for deciding which features warrant geological interpretation. This method should make possible more robust inferences on subsurface structure using receiver function analysis, especially in areas of poor data coverage or under noisy station conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Blind Deconvolution Using a Student-t Prior Model and Variational Bayesian Approximation

Deconvolution consists in estimating the input of a linear and invariant system from its output knowing its Impulse Response Function (IRF). When the IRF of the system is unknown, we are face to Blind Deconvolution. This inverse problem is ill-posed and needs prior information to obtain a satisfactory solution. Regularization theory, well known for simple deconvolution, is no more enough to obt...

متن کامل

Bayesian Blind Deconvolution of sparse images with a Student-t a priori model

Blind image deconvolution consists in restoring a blurred and noisy image when the point spread function of the blurring system is not known a priori. This inverse problem is ill-posed and need prior information to obtain a satisfactory solution. Regularization methods, well known, for simple image deconvolution is not enough. Bayesian inference approach with appropriate priors on the image as ...

متن کامل

Bayesian Blind Deconvolution of Images Comparing Jmap, Em and Bva with a Student-t a Priori Model

Blind image deconvolution consists in restoring a blurred and noisy image when the point spread function of the blurring system is not known a priori. This inverse problem is ill-posed and need prior information to obtain a satisfactory solution. Regularization methods, well known, for simple image deconvolution is not enough. Bayesian inference approach with appropriate priors on the image as ...

متن کامل

Joint Inference of Microsatellite Mutation Models, Population History and Genealogies Using Transdimensional Markov Chain Monte Carlo

We provide a framework for Bayesian coalescent inference from microsatellite data that enables inference of population history parameters averaged over microsatellite mutation models. To achieve this we first implemented a rich family of microsatellite mutation models and related components in the software package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular...

متن کامل

Simultaneous estimation of noise variance and number of peaks in Bayesian spectral deconvolution

Heuristic identification of peaks from noisy complex spectra often leads to misunderstanding physical and chemical properties of matter. In this paper, we propose a framework based on Bayesian inference, which enables us to separate multi-peak spectra into single peaks statistically and is constructed in two steps. The first step is estimating both noise variance and number of peaks as hyperpar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014